Free-Standing ZnO:Mo Nanorods Exposed to Hydrogen or Oxygen Plasma: Influence on the Intrinsic and Extrinsic Defect States

Author:

Buryi Maksym,Remeš ZdeněkORCID,Babin VladimirORCID,Chertopalov SergiiORCID,Děcká KateřinaORCID,Dominec Filip,Mičová JúliaORCID,Neykova NedaORCID

Abstract

Cationic doping of ZnO nanorods has gained increased interest as it can lead to the production of materials with improved luminescent properties, electrical conductivity and stability. We report on various Mo-doped ZnO powders of nanorods synthesized by the hydrothermal growth method. Further annealing or/and cold hydrogen or oxygen plasma modification was applied. The atomic structure of the as-grown and plasma-modified rods was characterized by X-ray diffraction. To identify any possible changes in morphology, scanning electron microscopy was used. Paramagnetic point defects were investigated by electron paramagnetic resonance. In particular, two new types of defects were initiated by the plasma treatment. Their appearance was explained, and corresponding mechanisms were proposed. The changes in the luminescence and scintillation properties were characterized by photo- and radioluminescence, respectively. Charge trapping phenomena were studied by thermally stimulated luminescence. Cold plasma treatment influenced the luminescence properties of ZnO:Mo structures. The contact with hydrogen lead to an approximately threefold increase in intensity of the ultraviolet exciton-related band peaking at ~3.24 eV, whereas the red band attributed to zinc vacancies (~1.97 eV) was suppressed compared to the as-grown samples. The exciton- and defect-related emission subsided after the treatment in oxygen plasma.

Funder

Czech Science Foundation

the Ministry of Education, Youth and Sports of Czech Republic

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3