Evaluation of Design Procedure and Performance of Continuously Reinforced Concrete Pavement According to AASHTO Design Methods

Author:

Moharekpour Milad,Liu PengfeiORCID,Schmidt Joshua,Oeser Markus,Jing RuxinORCID

Abstract

The Guide for Design of Pavement Structures (AASHTO 86/93) and Mechanistic Empirical Pavement Design Guide (MEPDG) are two common methods to design continuously reinforced concrete pavement (CRCP) published by the American Association of State Highway and Transportation Officials (AASHTO) in the USA. The AASHTO 86/93 is based on empirical equations to assess the performance of highway pavements under moving loads with known magnitude and frequency derived from experiments on AASHTO road tests. The MEPDG is a pavement design method based on engineering mechanics and numerical models for analysis. It functions by incorporating additional attributes such as environment, material properties, and vehicle axle load to predict pavement performance and degradation at the selected reliability level over the intended performance period. In order to evaluate the CRCP design procedure and performance, crack width (CW) and crack spacing (CS) from five examined test tracks in Europe with different climate condition, base layer, geometry, and materials were collected in this paper and compared with predicted distresses as well as CW and CS from AASHTO 86/93 and MEPDG design methods. The results show that the interactions between geometrics, material properties, traffic, and environmental conditions in the MEPDG method are more pronounced than in the AASHTO 86/93 and the prediction of CS and CW based on MEPDG matched closely with the recorded data from sections.

Funder

Federal Highway Research Institute

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. Design, Construction, and Performance of Continuously Reinforced Concrete Pavement Reinforced with GFRP Bars: Case Study

2. Comparison of CRCP and JCP based on a 30-year performance history;Jung;Int. J. Pavement Eng.,2020

3. Structural analysis of transverse cracks in short continuously reinforced concrete pavements;Khazanovich;Int. J. Pavement Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3