Quantifying States and Transitions of Emerging Postural Control for Children Not Yet Able to Sit Independently

Author:

Mellodge Patricia1,Saavedra Sandra2,Tran Poit Linda3,Pratt Kristamarie A.4,Goodworth Adam D.5

Affiliation:

1. Department of Electrical and Computer Engineering, College of Engineering, Technology, and Architecture, University of Hartford, West Hartford, CT 06117, USA

2. Physical Therapy Program, College of Health Sciences, Western University of Health Sciences-Oregon, Lebanon, OR 97355, USA

3. Hartford Hospital, Hartford, CT 06106, USA

4. Department of Rehabilitation Sciences, College of Education, Nursing and Health Professions, University of Hartford, West Hartford, CT 06117, USA

5. Department of Kinesiology, Westmont College, Santa Barbara, CA 93108, USA

Abstract

Objective, quantitative postural data is limited for individuals who are non-ambulatory, especially for those who have not yet developed trunk control for sitting. There are no gold standard measurements to monitor the emergence of upright trunk control. Quantification of intermediate levels of postural control is critically needed to improve research and intervention for these individuals. Accelerometers and video were used to record postural alignment and stability for eight children with severe cerebral palsy aged 2 to 13 years, under two conditions, seated on a bench with only pelvic support and with additional thoracic support. This study developed an algorithm to classify vertical alignment and states of upright control; Stable, Wobble, Collapse, Rise and Fall from accelerometer data. Next, a Markov chain model was created to calculate a normative score for postural state and transition for each participant with each level of support. This tool allowed quantification of behaviors previously not captured in adult-based postural sway measures. Histogram and video recordings were used to confirm the output of the algorithm. Together, this tool revealed that providing external support allowed all participants: (1) to increase their time spent in the Stable state, and (2) to reduce the frequency of transitions between states. Furthermore, all participants except one showed improved state and transition scores when given external support.

Funder

National Science Foundation

University of Hartford

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3