Author:
Li Longxian,Zhu Min,Zheng Guikai,Li Yan,Yang Yang,Liu Yilong,Su Huan
Abstract
To deeply understand the adsorption process of oxygen on the surface of a plutonium gallium system and to reveal the chemical reaction mechanism at the initial stage of oxidative corrosion on the surface of plutonium gallium alloy at a theoretical level, the adsorption behavior of oxygen molecules on the surface of a plutonium gallium system was investigated by a first-principles approach based on density flooding theory. The results show that the molecular bond length increases and finally breaks when the surface oxygen molecule is adsorbed on the surface of plutonium gallium system and dissociates into two atomic states. The most likely adsorption position of oxygen molecules on the surface of plutonium gallium system is hole-site vertical adsorption with the adsorption energy size of 10.7 eV. The bonding between oxygen atom and surface is mainly due to the overlapping hybridization of Pu-6s, Pu-7s, Pu-6d, Ga-3d and O-2p orbitals. Oxygen molecules mainly interact with the atoms of the first layer on the surface of the plutonium gallium system. The oxygen atoms after stable adsorption are able to diffuse to the subsurface of the plutonium gallium system after overcoming the energy barrier of 16.7 eV and form a stable structure. The research results reveal the initial reaction process and adsorption law of oxygen on the surface of plutonium gallium system from microscopic level, which is helpful to further explore the surface corrosion prevention technology of plutonium gallium system and improve the reliability and safety of plutonium gallium alloy components.
Subject
General Materials Science
Reference25 articles.
1. Plutonium condensed-matter physics—A survey of theory and experiment;Boring;Los Alamos Sci.,2000
2. Phase stability of plutonium;Ek;Phys. Rev. B Condens. Matter,1993
3. Plutonium—an Element Never at Equilibrium
4. Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium
5. Challenges in plutonium science;Cooper;Los Alamos Sci. Los Alamos Sci. Lab.,2000
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献