Multifunctional Control Technique for Grid-Tied Hybrid Distributed Generation System Taking into Account Power Quality Issues

Author:

Boulanouar Sohaib Abdeslam1,Kaddouri Ameur Miloud1,Kouzou Abdellah12ORCID,Benaissa Amar1,Teta Ali1,Hafaifa Ahmed12ORCID,Kennel Ralph3,Abdelrahem Mohamed34ORCID

Affiliation:

1. Laboratory of Applied Automation and Industrial Diagnostics (LAADI), Faculty of Science and Technology, Ziane Achour University, Djelfa 17000, Algeria

2. Electrical and Electronics Engineering Department, Nisantasi University, Istanbul 34398, Turkey

3. Chair of High-Power Converter Systems, Technical University of Munich (TUM), 80333 Munich, Germany

4. Department of Electrical Engineering, Assiut University, Assiut 71516, Egypt

Abstract

This paper proposes a new multifunctional control technique for a grid-connected hybrid distributed generation system composed of a photovoltaic system and a wind power system based on a voltage source converter (VSC). Indeed, aside from the generation and the injection of energy into the grid, the proposed system deals with power quality issues caused by harmonics generated by non-linear loads in order to keep the source current uncontaminated. The VSC serves to first ensure that the power generated from the hybrid renewable energy source is fed to the utility grid and acts as a shunt active power filter in case an abnormal increase in the THD of the source current above the standard permissible values is detected due to the non-linear load connection. The two sources of the hybrid system are connected to a common DC bus to simplify the control and reduce the cost of the system, and a maximum power point tracking controller is used for both sources. The major advantage of this novel proposed multifunctional control technique is its ability to inject harvested power into the grid while simultaneously ensuring the compensation of the harmonics and reactive power. The proposed multifunctional control technique is validated through an extensive simulation analysis using MATLAB/Simulink.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3