Ecosystem Management of Eastern Canadian Boreal Forests: Potential Impacts on Wind Damage

Author:

Ruel Jean-ClaudeORCID

Abstract

Research Highlights: Windthrow can interfere significantly with ecosystem management practices. In some cases, their goal could still be reached but this may prove more complex in other cases, like the partial cutting of old-growth stands. In situations where windthrow is common without any human intervention, the use of partial cutting to maintain some stand structures may lead to a feedback loop leading to additional windthrow. Background and Objectives: Forest ecosystem management using natural disturbances as a template has become the management paradigm in many regions. Most of the time, the focus is on fire regime and effects. However, windthrow can be common in some places or can interfere with practices implemented in an ecosystem management strategy. This paper looks at interactions between ecosystem management and windthrow. Materials and Methods: The paper builds on three case studies looking at various elements that could be part of ecosystem management strategies. The first one looks at the impact of green tree retention, while the second one looks at the impact of reducing the size and dispersing clearcuts, and the last one examines the impact of a range of cutting practices in irregular old-growth stands. Results: Green tree retention leads to increased windthrow, especially when applied within mature even-aged stands. Reducing the size of clearcuts and dispersing them over the landscape also involves substantial windthrow along edges. Partial cutting in old-growth stands can lead to relatively high mortality, but part of it is not necessarily related to wind since it occurs as standing dead trees. Differences in the amount of damage with tree size and species have been found and could be used to reduce wind damage. Conclusions: Approaches to minimize wind damage in ecosystem management can be designed using existing knowledge. However, using windthrow as a template to design management strategies would prove more complex.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3