Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles

Author:

Benhammou Aissa12ORCID,Tedjini Hamza2ORCID,Hartani Mohammed Amine3,Ghoniem Rania M.4,Alahmer Ali56ORCID

Affiliation:

1. Laboratory of Instrumentation and Advanced Materials (LIMA), Nour Bachir University Center, El-Bayadh 32000, Algeria

2. SGRE Laboratory, Tahri Mohamed University, Bechar 08000, Algeria

3. Sustainable Development and Computer Science Laboratory SDCS-L, Ahmed Draia University, Adrar 01000, Algeria

4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA

6. Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan

Abstract

The development of hybrid electric vehicles (HEVs) is rapidly gaining traction as a viable solution for reducing carbon emissions and improving fuel efficiency. One type of HEV that is gaining significant interest is the fuel cell/battery/supercapacitor HEV (FC/Bat/SC HEV), which combines fuel cell, battery, supercapacitor, AC, and DC generators. These FC/B/SC HEVs are particularly appealing because they excel at efficiently managing energy and cater to a wide range of driving requirements. This study presents a novel approach for exploiting the kinetic energy of a sensorless HEV. The vehicle has a primary fuel cell resource, a supercapacitor, and lithium-ion battery energy storage banks, where each source is connected to a special converter. The obtained hybrid system allows the vehicle to enhance autonomy, support the fuel cell during low production moments, and improve transient and steady-state load requirements. The exploitation of kinetic energy is performed by the DC and AC generators that are linked to the electric vehicle front wheels to transfer the HEV’s wheel rotation into power, contributing to the overall power balance of the vehicle. The energy management system for electric vehicles determines the FC setpoint power through the classical state machine method. At the same time, a robust speed controller-based artificial intelligence algorithm reduces power losses and enhances the supply efficiency for the vehicle. Furthermore, we evaluate the performance of a robust controller with a speed estimator, specifically using the adaptive neuro-fuzzy inference system (ANFIS) and the model reference adaptive system (MRAS) estimator in conjunction with the direct torque control-support vector machine (DTC-SVM), to enhance the torque and speed performance of HEVs. The results demonstrate the feasibility and reliability of the vehicle while utilizing the additional DC and AC generators to extract free kinetic energy, both of which contributed to 28% and 24% of the total power for the vehicle, respectively. This approach leads to a vehicle supply efficiency exceeding 96%, reducing the burden on fuel cells and batteries and resulting in a significant reduction in fuel consumption, which is estimated to range from 25% to 35%.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3