Design and Optimization of Multifunctional Human Motion Rehabilitation Training Robot EEGO

Author:

Liu Kun1ORCID,Ji Shuo1,Liu Yong1,Gao Chi1,Fu Jun1,Dai Lei1,Zhang Shizhong1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

Abstract

A multifunctional human motion rehabilitation training robot named EEGO (electric easy go) that could achieve four functions through structural transformation was designed. The four functions achieved by four working modes: the Supporting Posture Mode (SM), the Grasping Posture Mode (GM), the Riding Posture Mode (RM), and the Pet Mode (PM), which are suitable for patients in the middle and late stages of rehabilitation. The size of the equipment under different functions is determined by the height of different postures of the human. During the design process, the equipment was lightweight using size optimization methods, resulting in a 47.3% reduction in mass compared to the original design. Based on the Zero Moment Point (ZMP) stability principle, the stability mechanism of the robot was verified under the three different functions. According to the wanted function of the equipment, the control system of the equipment was designed. Finally, a prototype was prepared based on the analysis and design results for experimental verification, which can effectively assist patients in motion rehabilitation training such as gait, walking, and other movements.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3