Electric Migration of Hydrogen Ion in Pore-Voltammetry Suppressed by Nafion Film

Author:

Liu LingORCID,Aoki Koichi JeremiahORCID,Chen JingyuanORCID

Abstract

Micro-hole voltammetry exhibiting rectified current-voltage curves was performed in hydrochloric acid by varying the lengths and the diameters of the micro-holes on one end of which a Nafion film was mounted. Some voltammetric properties were compared with those in NaCl solution. The voltammograms were composed of two line-segments, the slope of one segment being larger than the other. They were controlled by electric migration partly because of the linearity of the voltammograms and partly the independence of the scan rates. Since the low conductance which appeared in the current from the hole to the Nafion film was proportional to the cross section area of the hole and the inverse of the length of the hole, it should be controlled by the geometry of the hole. The conductance of the hydrogen ion in the Nafion film was observed to be smaller than that in the bulk, because the transport rate of hydrogen ion by the Grotthuss mechanism was hindered by the destruction of hydrogen bonds in the film. In contrast, the conductance for the current from the Nafion to the hole, enhancing by up to 30 times in magnitude from the opposite current, was controlled by the cell geometry rather than the hole geometry except for very small holes. A reason for the enhancement is a supply of hydrogen ions from the Nafion to increase the concentration in the hole. The concentration of the hydrogen ion was five times smaller than that of sodium ion because of the blocking of transport of the hydrogen ion in the Nafion film. However, the rectification ratio of H+ was twice as large as that of Na+.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3