Abstract
PCBs (polychlorinated biphenyls) are a very large group of organic compounds that have between two and ten chlorine atoms attached to the biphenyl. These compounds have an acute impact as environmental pollutants, causing cancer and other adverse health effects in humans. It is therefore imperative to develop techniques for the cost-effective detection of PCBs at very low concentrations in ecosystems. In this paper, a novel label-free, indirect, competitive electrochemical immunosensor was first developed with a PCB-BSA conjugate. It is shown herein to compete with free PCBs for binding to the anti-PCB polyclonal primary antibody (IgY). Then, we used a secondary antibody to enhance the sensitivity of the sensor for the detection of PCB in a sample. It has been successfully immobilized on an 11-mercaptoundecanoic acid (11-MUA)-modified gold electrode via a carbodiimide-coupling reaction using cross-linking 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) on the electrode surface. The immunosensor was investigated by cyclic voltammetry and differential pulse voltammetry in a standard solution of [Fe(CN)6]3−/4−. A linear range of 0.011–220 ng/mL−1 and a limit of detection (LOD) of 0.11 ng/mL−1 for PCBs detection were achieved by the developed immunosensor, showing advantages over conventional assays. The novel label-free electrochemical immunosensor discussed in this paper is a solution for simple, rapid, cost-effective sample screening in a portable, disposable format. The proposed immunosensor has good sensitivity, and it can prove to be an adequate real-time monitoring solution for PCBs in soil samples or other samples.
Funder
Ministry of Higher Education of Saudi Arabia
Subject
Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology