Abstract
The high specific surface area of multilayered two-dimensional carbides called MXenes, is a critical feature for their use in energy storage systems, especially supercapacitors. Therefore, the possibility of controlling this parameter is highly desired. This work presents the results of the influence of oxygen concentration during Ti3AlC2 ternary carbide—MAX phase preparation on α-Al2O3 particles content, and thus the porosity and specific surface area of the Ti3C2Tx MXenes. In this research, three different Ti3AlC2 samples were prepared, based on TiC-Ti2AlC powder mixtures, which were conditioned and cold pressed in argon, air and oxygen filled glove-boxes. As-prepared pellets were sintered, ground, sieved and etched using hydrofluoric acid. The MAX phase and MXene samples were analyzed using scanning electron microscopy and X-ray diffraction. The influence of the oxygen concentration on the MXene structures was confirmed by Brunauer-Emmett-Teller surface area determination. It was found that oxygen concentration plays an important role in the formation of α-Al2O3 inclusions between MAX phase layers. The mortar grinding of the MAX phase powder and subsequent MXene fabrication process released the α-Al2O3 impurities, which led to the formation of the porous MXene structures. However, some non-porous α-Al2O3 particles remained inside the MXene structures. Those particles were found ingrown and irremovable, and thus decreased the MXene specific surface area.
Subject
General Materials Science
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献