Abstract
Graphene-quantum dot nanocomposites attract significant attention for novel optoelectronic devices, such as ultrafast photodetectors and third-generation solar cells. Combining the remarkable optical properties of quantum dots (QDs) with the exceptional electrical properties of graphene derivatives opens a vast perspective for further growth in solar cell efficiency. Here, we applied (3-mercaptopropyl) trimethoxysilane functionalized reduced graphene oxide (f-rGO) to improve the QDs-based solar cell active layer. The different strategies of f-rGO embedding are explored. When f-rGO interlayers are inserted between PbS QD layers, the solar cells demonstrate a higher current density and a better fill factor. A combined study of the morphological and electrical parameters of the solar cells shows that the improved efficiency is associated with better layer homogeneity, lower trap-state densities, higher charge carrier concentrations, and the blocking of the minor charge carriers.
Funder
Russian Science Foundation
Ministry of Education and Science of the Russian Federation
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献