Abstract
Previous studies have shown that dust aerosols may accelerate the melting of snow and glaciers over the Tibetan Plateau. To investigate the vertical structure of dust aerosols, we conducted a ground-based observation by using multi-wavelength polarization lidar which is designed for continuous network measurements. In this study, we used the lidar observation from September to October 2020 at the Ruoqiang site (39.0°N, 88.2°E; 894 m ASL), located at the junction of the Taklimakan Desert–Tibetan Plateau. Our results showed that dust aerosols can be lifted up to 5 km from the ground, which is comparable with the elevation of the Tibetan Plateau in autumn with a mass concentration of 400–900 μg m−3. Moreover, the particle depolarization ratio (PDR) of the lifted dust aerosols at 532 nm and 355 nm are 0.34 ± 0.03 and 0.25 ± 0.04, respectively, indicating the high degree of non-sphericity in shape. In addition, extinction-related Ångström exponents are very small (0.11 ± 0.24), implying the large values in size. Based on ground-based lidar observation, this study proved that coarse non-spherical Taklimakan dust with high concentration can be transported to the Tibetan Plateau, suggesting its possible impacts on the regional climate and ecosystem.
Funder
National Natural Science Foundation of China
Higher Education Discipline Innovation Project
Project of Field Scientific Observation and Research Station of Gansu Province
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献