Generalized Skewed Model for Spatial-Fractional Advective–Dispersive Phenomena

Author:

de Moraes Ricardo MendonçaORCID,Ozelim Luan Carlos de Sena MonteiroORCID,Cavalcante André Luís BrasilORCID

Abstract

The conventional mathematical model expressed by the advection–dispersion equation has been widely used to describe contaminant transport in porous media. However, studies have shown that it fails to simulate early arrival of contaminant, long tailing breakthrough curves and presents a physical scale-dependency of the dispersion coefficient. Recently, advances in fractional calculus allowed the introduction of fractional order derivatives to model several engineering and physical phenomena, including the anomalous dispersion of solute particles. This approach gives birth to the fractional advection–dispersion equation. This work presents new solutions to the fractional transport equation that satisfies the initial condition of constant solute injection in a semi-infinite medium. The new solution is derived based on a similarity approach. Moreover, laboratory column tests were performed in a Brazilian lateritic soil to validate the new solution with experimental data and compare its accuracy with the conventional model and other fractional solutions. The new solution outperforms the existing ones and reveals an interesting fractal-like scaling rule for the diffusivity coefficients.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Fundação de Amparo a Pesquisa do Distrito Federal

University of Brasília

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of the continuous time random walk using subordination schemes;Physical Review E;2024-09-05

2. Fractional advection diffusion asymmetry equation, derivation, solution and application;Journal of Physics A: Mathematical and Theoretical;2024-01-04

3. Fractional Anomalous Diffusion;An Introduction to Anomalous Diffusion and Relaxation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3