Abstract
The conventional mathematical model expressed by the advection–dispersion equation has been widely used to describe contaminant transport in porous media. However, studies have shown that it fails to simulate early arrival of contaminant, long tailing breakthrough curves and presents a physical scale-dependency of the dispersion coefficient. Recently, advances in fractional calculus allowed the introduction of fractional order derivatives to model several engineering and physical phenomena, including the anomalous dispersion of solute particles. This approach gives birth to the fractional advection–dispersion equation. This work presents new solutions to the fractional transport equation that satisfies the initial condition of constant solute injection in a semi-infinite medium. The new solution is derived based on a similarity approach. Moreover, laboratory column tests were performed in a Brazilian lateritic soil to validate the new solution with experimental data and compare its accuracy with the conventional model and other fractional solutions. The new solution outperforms the existing ones and reveals an interesting fractal-like scaling rule for the diffusivity coefficients.
Funder
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
National Council for Scientific and Technological Development
Fundação de Amparo a Pesquisa do Distrito Federal
University of Brasília
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献