Simplicial Complex-Enhanced Manifold Embedding of Spatiotemporal Data for Structural Health Monitoring

Author:

Xu Nan1,Zhang Zhiming1ORCID,Liu Yongming1

Affiliation:

1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA

Abstract

Structural Health Monitoring requires the continuous assessment of a structure’s operational conditions, which involves the collection and analysis of a large amount of data in both spatial and temporal domains. Conventionally, both data-driven and physics-based models for structural damage detection have relied on handcrafted features, which are susceptible to the practitioner’s expertise and experience in feature selection. The limitations of handcrafted features stem from the potential for information loss during the extraction of high-dimensional spatiotemporal data collected from the sensing system. To address this challenge, this paper proposes a novel, automated structural damage detection technique called Simplicial Complex Enhanced Manifold Embedding (SCEME). The key innovation of SCEME is the reduction of dimensions in both the temporal and spatial domains for efficient and information-preserving feature extraction. This is achieved by constructing a simplicial complex for each signal and using the resulting topological invariants as key features in the temporal domain. Subsequently, curvature-enhanced topological manifold embedding is performed for spatial dimension reduction. The proposed methodology effectively represents both intra-series and inter-series correlations in the low-dimensional embeddings, making it useful for classification and visualization. Numerical simulations and two benchmark experimental datasets validate the high accuracy of the proposed method in classifying different damage scenarios and preserving useful information for structural identification. It is especially beneficial for structural damage detection using complex data with high spatial and temporal dimensions and large uncertainties in reality.

Funder

NASA University Leadership Initiative program

the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technology Office

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PIGAT: Physics-Informed Graph Attention Transformer for Air Traffic State Prediction;IEEE Transactions on Intelligent Transportation Systems;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3