A Novel Simulation Method for 3D Digital-Image Correlation: Combining Virtual Stereo Vision and Image Super-Resolution Reconstruction

Author:

Chen Hao1ORCID,Li Hao1,Liu Guohua1ORCID,Wang Zhenyu1

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

3D digital-image correlation (3D-DIC) is a non-contact optical technique for full-field shape, displacement, and deformation measurement. Given the high experimental hardware costs associated with 3D-DIC, the development of high-fidelity 3D-DIC simulations holds significant value. However, existing research on 3D-DIC simulation was mainly carried out through the generation of random speckle images. This study innovatively proposes a complete 3D-DIC simulation method involving optical simulation and mechanical simulation and integrating 3D-DIC, virtual stereo vision, and image super-resolution reconstruction technology. Virtual stereo vision can reduce hardware costs and eliminate camera-synchronization errors. Image super-resolution reconstruction can compensate for the decrease in precision caused by image-resolution loss. An array of software tools such as ANSYS SPEOS 2024R1, ZEMAX 2024R1, MECHANICAL 2024R1, and MULTIDIC v1.1.0 are used to implement this simulation. Measurement systems based on stereo vision and virtual stereo vision were built and tested for use in 3D-DIC. The results of the simulation experiment show that when the synchronization error of the basic stereo-vision system (BSS) is within 10−3 time steps, the reconstruction error is within 0.005 mm and the accuracy of the virtual stereo-vision system is between the BSS’s synchronization error of 10−7 and 10−6 time steps. In addition, after image super-resolution reconstruction technology is applied, the reconstruction error will be reduced to within 0.002 mm. The simulation method proposed in this study can provide a novel research path for existing researchers in the field while also offering the opportunity for researchers without access to costly hardware to participate in related research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3