Variable Time-Step Physics Engine with Continuous Compliance Contact Model for Optimal Robotic Grinding Trajectory Planning

Author:

Zhou Yongcan123ORCID,Pan Yang123,Chen Junpeng123,Lei Tianjian123ORCID

Affiliation:

1. Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen 518055, China

2. Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China

3. Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

In the transition from virtual environments to real-world applications, the role of physics engines is crucial for accurately emulating and representing systems. To address the prevalent issue of inaccurate simulations, this paper introduces a novel physics engine uniquely designed with a compliant contact model designed for robotic grinding. It features continuous and variable time-step simulations, emphasizing accurate contact force calculations during object collision. Firstly, the engine derives dynamic equations considering spring stiffness, damping coefficients, coefficients of restitution, and external forces. This facilitates the effective determination of dynamic parameters such as contact force, acceleration, velocity, and position throughout penetration processes continuously. Secondly, the approach utilizes effective inertia in developing the contact model, which is designed for multi-jointed robots through pose transformation. The proposed physics engine effectively captures energy conversion in scenarios with convex contact surface shapes through the application of spring dampers during collisions. Finally, the reliability of the contact solver in the simulation was verified through bouncing ball experiments and robotic grinding experiments under different coefficients of restitution. These experiments effectively recorded the continuous variations in parameters, such as contact force, verifying the integral stability of the system. In summary, this article advances physics engine technology beyond current geometrically constrained contact solutions, enhancing the accuracy of simulations and modeling in virtual environments. This is particularly significant in scenarios wherein there are constant changes in the outside world, such as robotic grinding tasks.

Funder

National Key R&D Program of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic jam of robotic compliant touch system—Painlevé paradox;International Journal of Mechanical Sciences;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3