The Potential of Duplex Stainless Steel Processed by Laser Powder Bed Fusion for Biomedical Applications: A Review

Author:

Gatto Maria Laura1ORCID,Santoni Alberto1ORCID,Santecchia Eleonora1ORCID,Spigarelli Stefano1ORCID,Fiori Fabrizio2ORCID,Mengucci Paolo3ORCID,Cabibbo Marcello1ORCID

Affiliation:

1. Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy

2. Department DISCO, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

3. Department SIMAU & UdR INSTM, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy

Abstract

The austenitic stainless steels utilized in the production of osteosynthesis devices are susceptible to crevice corrosion. Several studies have compared the corrosive behavior of austenitic and duplex stainless steels (DSS), both of which are recognized as viable biomaterials for tissue engineering applications. All of the in vitro and in vivo studies on animals and clinical results reported to date indicate that austeno-ferritic duplex stainless steel can be recommended as a suitable alternative to ASTM F138 steel, since it is resistant to crevice corrosion in the human body and presents superior mechanical properties. The use of DSS for biomedical applications is still under discussion, mainly due to the lack of knowledge of its behavior in terms of device heating or induced movement when exposed to magnetic fields, a potentially harmful effect for the human body. As a breakthrough production technology, additive manufacturing (AM) has demonstrated significant benefits for the fabrication of metal devices with patient-specific geometry. Laser powder bed fusion has particularly been used to manufacture DSS-based components. A fine control of the processing conditions allows for an understanding of DSS microstructural evolution, which is essential for selecting processing parameters and estimating performance, including mechanical properties and corrosion resistance. Furthermore, scientific investigation is necessary for determining the relationships among material, process, and magnetic properties, in order to establish the underlying principles and critical responses. The purpose of this review is to highlight the key performances of DSS for biomedical applications and to point out the relevant role of advanced processing technologies such as additive manufacturing.

Funder

Excellence Departments, MIUR-Italy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3