Author:
Okayasu Kazushige,Yoshida Kota,Fuchida Masataka,Nakamura Akio
Abstract
This study aims to propose a vision-based method to classify mosquito species. To investigate the efficiency of the method, we compared two different classification methods: The handcraft feature-based conventional method and the convolutional neural network-based deep learning method. For the conventional method, 12 types of features were adopted for handcraft feature extraction, while a support vector machine method was adopted for classification. For the deep learning method, three types of architectures were adopted for classification. We built a mosquito image dataset, which included 14,400 images with three types of mosquito species. The dataset comprised 12,000 images for training, 1500 images for testing, and 900 images for validating. Experimental results revealed that the accuracy of the conventional method using the scale-invariant feature transform algorithm was 82.4% at maximum, whereas the accuracy of the deep learning method was 95.5% in a residual network using data augmentation. From the experimental results, deep learning can be considered to be effective for classifying the mosquito species of the proposed dataset. Furthermore, data augmentation improves the accuracy of mosquito species’ classification.
Funder
Research Institute for Science and Technology of Tokyo Denki University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference23 articles.
1. World Health Organization: Mosquito-Borne Diseaseshttp://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/
2. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine
3. Caltech-UCSD Birds 200;Welinder,2010
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献