A Multimodal Sensing Platform for Interdisciplinary Research in Agrarian Environments

Author:

Reynolds JamesORCID,Williams Evan,Martin Devon,Readling Caleb,Ahmmed ParvezORCID,Huseth AndersORCID,Bozkurt AlperORCID

Abstract

Agricultural and environmental monitoring programs often require labor-intensive inputs and substantial costs to manually gather data from remote field locations. Recent advances in the Internet of Things enable the construction of wireless sensor systems to automate these remote monitoring efforts. This paper presents the design of a modular system to serve as a research platform for outdoor sensor development and deployment. The advantages of this system include low power consumption (enabling solar charging), the use of commercially available electronic parts for lower-cost and scaled up deployments, and the flexibility to include internal electronics and external sensors, allowing novel applications. In addition to tracking environmental parameters, the modularity of this system brings the capability to measure other non-traditional elements. This capability is demonstrated with two different agri- and aquacultural field applications: tracking moth phenology and monitoring bivalve gaping. Collection of these signals in conjunction with environmental parameters could provide a holistic and context-aware data analysis. Preliminary experiments generated promising results, demonstrating the reliability of the system. Idle power consumption of 27.2 mW and 16.6 mW for the moth- and bivalve-tracking systems, respectively, coupled with 2.5 W solar cells allows for indefinite deployment in remote locations.

Funder

National Science Foundation

United States Department of Agriculture

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3