Abstract
Chlorogenic acid (5-O-caffeoylquinic acid) is a phenolic compound from the hydroxycinnamic acid family. Epidemiological, biological, and biochemical studies concur to support the beneficial role of chlorogenic acid in human health, along with other dietary phenolic compounds. Thus, chlorogenic acid has been reported to exert inhibitory effects on carcinogenesis in the large intestine, liver, and tongue, and a protective action on oxidative stress in vivo, together with anti-inflammatory, antidiabetic and antihypertensive activities. It is also claimed to have antifungal, antibacterial and antiviral effects with relatively low toxicity and side effects, alongside properties that do not lead to antimicrobial resistance. Due to its importance, numerous methods for determining chlorogenic acid (CGA), as well as for its derivatives from coffee beans and other plants, were elaborated. The most frequently used methods are infrared spectroscopy, high performance liquid chromatography (HPLC), capillary electrophoresis, liquid chromatography-mass spectrometry and chemiluminescence. Although these methods proved to be efficient for quantifying CGA and its derived products, a number of deficiencies were identified: they are time consuming, laborious, and require expensive instruments. Therefore, electrochemical methods have been developed and used in the determination of CGA in different nutraceuticals or food products. The present review aims to present the main progresses and performance characteristics of electrochemical sensors and biosensors used to detect CGA, as it is reported in a high number of relevant scientific papers published mainly in the last decade.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献