The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function

Author:

Li LiORCID,Gao Ying,Xu Siyi,Lu Houxian,He Qimin,Yu Hang

Abstract

Compared to the zenith hydrostatic delay (ZHD) obtained from the Saastamonien model based on in-situ measured meteorological (IMM) data and radiosonde-derived weighted mean temperature (Tm), the ZHD and Tm deviations of the GPT3 model have shown obvious periodic trends. This article analyzed the seasonal variations of GPT3-ZHD and GPT3-Tm during the 2016–2020 period in the Yangtze River Delta region, and the new improved ZHD and Tm models were established by the multi-order Fourier function. The precision of the improved-ZHD model was verified using IMM-ZHD products from 7 GNSS stations during the 2016–2020 period. Furthermore, the precisions of improved Tm and precipitable water vapor (PWV) were verified by radiosonde-derived Tm and PWV in the 2016–2019 period. Compared with the IMM-ZHD and GNSS-PWV products, the mean Bias and RMS of GPT3-ZHD are −0.5 mm and 2.1 mm, while those of GPT3-PWV are 2.7 mm and 11.1 mm. Compared to the radiosonde-derived Tm, the mean Bias and RMS of GPT3-Tm are −0.8 K and 3.2 K. The mean Bias and RMS of the improved-ZHD model from 2019 to 2020 are −0.1 mm and 0.5 mm, respectively, decreasing by 0.4 mm and 1.6 mm compared to the GPT3-ZHD, while those of the improved-Tm are −0.6 K and 2.7 K, respectively, decreasing by 0.2 K and 0.5 K compared to GPT3-Tm. The mean Bias and RMS of PWV calculated by GNSS-ZTD, improved-ZHD, and improved-Tm are 0.5 mm and 0.6 mm, respectively, compared to the GNSS-PWV, decreasing by 2.2 mm and 10.5 mm compared to the GPT3-PWV. It indicates that the improved ZHD and Tm models can be used to obtain the high-precision PWV. It can be applied effectively in the retrieval of high-precision PWV in real-time in the Yangtze River Delta region.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference66 articles.

1. Ground-based GPS water vapour estimation: potential for meteorological forecasting

2. PPP and Network True Real-time 30 sec Estimation of ZTD in Dense and Giant Regional GPS Network and the Application of ZTD for Nowcasting of Heavy Rainfall;Iwabuchi;Proceedings of the ION GNSS 19th International Technical Meeting of the Satellite Division,2006

3. Rainstorm nowcasting based on GPS real-time precise point positioning technology;Li;Chin. J. Geophys.,2012

4. Development of an Improved Model for Prediction of Short-Term Heavy Precipitation Based on GNSS-Derived PWV

5. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3