Deep Learning Based Calibration Time Reduction for MOS Gas Sensors with Transfer Learning

Author:

Robin YannickORCID,Amann JohannesORCID,Goodarzi PaymanORCID,Schneider TizianORCID,Schütze AndreasORCID,Bur ChristianORCID

Abstract

In this study, methods from the field of deep learning are used to calibrate a metal oxide semiconductor (MOS) gas sensor in a complex environment in order to be able to predict a specific gas concentration. Specifically, we want to tackle the problem of long calibration times and the problem of transferring calibrations between sensors, which is a severe challenge for the widespread use of MOS gas sensor systems. Therefore, this contribution aims to significantly diminish those problems by applying transfer learning from the field of deep learning. Within the field of deep learning, transfer learning has become more and more popular. Nowadays, building a model (calibrating a sensor) based on pre-trained models instead of training from scratch is a standard routine. This allows the model to train with inherent information and reach a suitable solution much faster or more accurately. For predicting the gas concentration with a MOS gas sensor operated dynamically using temperature cycling, the calibration time can be significantly reduced for all nine target gases at the ppb level (seven volatile organic compounds plus carbon monoxide and hydrogen). It was possible to reduce the calibration time by up to 93% and still obtain root-mean-squared error (RMSE) values only double the best achieved RMSEs. In order to obtain the best possible transferability, different transfer methods and the influence of different transfer data sets for training were investigated. Finally, transfer learning based on neural networks is compared to a global calibration model based on feature extraction, selection, and regression to place the results in the context of already existing work.

Funder

“VOC4IAQ” funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the program Industrial Collective Research

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference41 articles.

1. GBD 2019 Risk Factors Collaborators (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396, 1223–1249.

2. Mortality from Solid Cancers among Workers in Formaldehyde Industries;Hauptmann;Am. J. Epidemiol.,2004

3. Robin, Y., Amann, J., Baur, T., Goodarzi, P., Schultealbert, C., Schneider, T., and Schütze, A. (2021). High-Performance VOC Quantification for IAQ Monitoring Using Advanced Sensor Systems and Deep Learning. Atmosphere, 12.

4. Schütze, A., and Sauerwald, T. (2020). Semiconductor Gas Sensors, Elsevier.

5. Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization;Fonollosa;Sens. Actuators B Chem.,2016

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3