Noninvasive Measurement of Time-Varying Arterial Wall Elastance Using a Single-Frequency Vibration Approach

Author:

Wang Jia-Jung,Liu Shing-HongORCID,Tseng Wei-Kung,Chen WenxiORCID

Abstract

The arterial wall elastance is an important indicator of arterial stiffness and a kind of manifestation associated with vessel-related disease. The time-varying arterial wall elastances can be measured using a multiple-frequency vibration approach according to the Voigt and Maxwell model. However, such a method needs extensive calculation time and its operating steps are very complex. Thus, the aim of this study is to propose a simple and easy method for assessing the time-varying arterial wall elastances with the single-frequency vibration approach. This method was developed according to the simplified Voigt and Maxwell model. Thus, the arterial wall elastance measured using this method was compared with the elastance measured using the multiple-frequency vibration approach. In the single-frequency vibration approach, a moving probe of a vibrator was induced with a radial displacement of 0.15 mm and a 40 Hz frequency. The tip of the probe directly contacted the wall of a superficial radial artery, resulting in the arterial wall moving 0.15 mm radially. A force sensor attached to the probe was used to detect the reactive force exerted by the radial arterial wall. According to Voigt and Maxwell model, the wall elastance (Esingle) was calculated from the ratio of the measured reactive force to the peak deflection of the displacement. The wall elastances (Emultiple) measured by the multiple-frequency vibration approach were used as the reference to validate the performance of the single-frequency approach. Twenty-eight healthy subjects were recruited in the study. Individual wall elastances of the radial artery were determined with the multiple-frequency and the single-frequency approaches at room temperature (25 °C), after 5 min of cold stress (4 °C), and after 5 min of hot stress (42 °C). We found that the time-varying Esingle curves were very close to the time-varying Emultiple curves. Meanwhile, there was a regression line (Esingle = 0.019 + 0.91 Emultiple, standard error of the estimate (SEE) = 0.0295, p < 0.0001) with a high correlation coefficient (0.995) between Esingle and Emultiple. Furthermore, from the Bland–Altman plot, good precision and agreement between the two approaches were demonstrated. In summary, the proposed approach with a single-frequency vibrator and a force sensor showed its feasibility for measuring time-varying wall elastances.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3