Sensing and Detection of Traffic Signs Using CNNs: An Assessment on Their Performance

Author:

Canese Lorenzo,Cardarilli Gian Carlo,Di Nunzio Luca,Fazzolari RoccoORCID,Famil Ghadakchi Hamed,Re Marco,Spanò SergioORCID

Abstract

Traffic sign detection systems constitute a key component in trending real-world applications such as autonomous driving and driver safety and assistance. In recent years, many learning systems have been used to help detect traffic signs more accurately, such as ResNet, Vgg, Squeeznet, and DenseNet, but which of these systems can perform better than the others is debatable. They must be examined carefully and under the same conditions. To check the system under the same conditions, you must first have the same database structure. Moreover, the practice of training under the same number of epochs should be the same. Other points to consider are the language in which the coding operation was performed as well as the method of calling the training system, which should be the same. As a result, under these conditions, it can be said that the comparison between different education systems has been done under equal conditions, and the result of this analogy will be valid. In this article, traffic sign detection was done using AlexNet and XresNet 50 training methods, which had not been used until now. Then, with the implementation of ResNet 18, 34, and 50, DenseNet 121, 169, and 201, Vgg 16_bn and Vgg19_bn, AlexNet, SqueezeNet1_0, and SqueezeNet1_1 training methods under completely the same conditions. The results are compared with each other, and finally, the best ones for use in detecting traffic signs are introduced. The experimental results showed that, considering parameters train loss, valid loss, accuracy, error rate and Time, three types of CNN learning models Vgg 16_bn, Vgg19_bn and, AlexNet performed better for the intended purpose. As a result, these three types of learning models can be considered for further studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3