Effects of the Emitted Light Spectrum of Liquid Crystal Displays on Light-Induced Retinal Photoreceptor Cell Damage

Author:

Lin Chao-Wen,Yang Chung-May,Yang Chang-Hao

Abstract

Liquid crystal displays (LCDs) are used as screens in consumer electronics and are indispensable in the modern era of computing. LCDs utilize light-emitting diodes (LEDs) as backlight modules and emit high levels of blue light, which may cause retinal photoreceptor cell damage. However, traditional blue light filters may decrease the luminance of light and reduce visual quality. We adjusted the emitted light spectrum of LED backlight modules in LCDs and reduced the energy emission but maintained the luminance. The 661W photoreceptor cell line was used as the model system. We established a formula of the ocular energy exposure index (OEEI), which could be used as the indicator of LCD energy emission. Cell viability decreased and apoptosis increased significantly after exposure to LCDs with higher emitted energy. Cell damage occurred through the induction of oxidative stress and mitochondrial dysfunction. The molecular mechanisms included activation of the NF-κB pathway and upregulation of the expression of proteins associated with inflammation and apoptosis. The effect was correlated with OEEI intensity. We demonstrated that LCD exposure-induced photoreceptor damage was correlated with LCD energy emission. LCDs with lower energy emission may, therefore, serve as suitable screens to prevent light-induced retinal damage and protect consumers’ eye health.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3