Uncovering Spatio-temporal Travel Patterns Using a Tensor-based Model from Metro Smart Card Data in Shenzhen, China

Author:

Tang Jinjun,Wang Xiaolu,Zong Fang,Hu Zheng

Abstract

Individual mobility patterns are an important factor in urban traffic planning and traffic flow forecasting. How to understand the spatio-temporal distribution of passengers deeply and accurately, so as to provide theoretical support for the planning and operation of the metro network, is an urgent issue of wide concern. In this paper, we applied NCP decomposition to uncover the characteristics of travel patterns from temporal and spatial dimensions in the metro network of Shenzhen City. Utilizing matrix factorization and correlation analysis, we extracted several stable components from the collective mobility and find that the departure and arrival mobility patterns have different characteristics in both the temporal and spatial dimension. According to the point of interest (POI) data in the Shenzhen City, the function attributes of the station are identified and then we found that the spatial distribution characteristics of different patterns are different. We explored the distribution of travel time classified according to the spatio-temporal characteristics of stable patterns. The proposed method can decompose stable travel patterns from the collective mobility and the results in this study can help us to better understand different mobility patterns in both spatial and temporal dimensions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference37 articles.

1. Understanding commuting patterns using transit smart card data

2. Predicting passengers in public transportation using smart card data;Dou;Australas. Database Conf.,2015

3. The Value of Automated Fare Collection Data for Transit Planning: An Example of Rail Transit OD Matrix Estimation;Gordillo,2006

4. Modeling the Hourly Distribution of Population at a High Spatiotemporal Resolution Using Subway Smart Card Data: A Case Study in the Central Area of Beijing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3