Performance Analysis of Channel Imbalance Control and Azimuth Ambiguity Suppression in Azimuth Dual Receiving Antenna Mode of LT-1 Spaceborne SAR System

Author:

Xu Zongxiang12ORCID,Lu Pingping12ORCID,Cai Yonghua12ORCID,Wu Yirong12,Wang Robert12ORCID

Affiliation:

1. National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The LuTan-1(LT-1), known as the L-band differential interferometric synthetic aperture radar (SAR) satellite system, is an essential piece of civil infrastructure in China, providing extensive applications such as surface deformation monitoring and topographic mapping. To achieve high-resolution and wide-swath (HRWS) observation abilities, the LT-1 takes the dual receiving antenna (DRA) imaging mode as its working mode. However, amplitude and phase errors between channels lead to a mismatch between the reconstruction filter and the multichannel echo signal, worsen the reconstructed azimuth spectrum, and introduce ambiguity targets in the final imaging results, seriously affecting the final imaging quality. In order to better evaluate the channel error and azimuth ambiguity performance of the LT-1 system, this paper proposed an advanced channel consistency correction method and conducted many measured data experiments. The experimental results show that the proposed method is effective, and the LT-1 system has excellent channel error control and azimuth ambiguity performance.

Funder

National Science Fund for Distinguished Young Scholars, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3