Phase Changes in the Surface Layer of Stainless Steel Annealed at a Temperature of 550 °C

Author:

Sedláčková AnnaORCID,Ivanova TatianaORCID,Mashlan MiroslavORCID,Doláková Hana

Abstract

Stainless steels have the advantage of forming a protective surface layer to prevent corrosion. This layer results from phase and structural changes on the steel surface. Stainless steel samples (1.4404, 316L), whose alloying elements include Cr, Ni, Mo, and Mn, were subjected to the study of the surface layer. Prism-shaped samples (25 × 25 × 3) mm3 were made from CL20ES stainless steel powder, using selective laser melting. After sandblasting with corundum powder and annealing at 550 °C for different periods of time (2, 4, 8, 16, 32, 64, 128 h), samples were studied by conversion X-ray Mössbauer spectroscopy (CXMS), conversion electron Mössbauer spectroscopy (CEMS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The main topics of the research were surface morphology and elemental and phase composition. The annealing of stainless steel samples resulted in a new surface layer comprising leaf-shaped crystals made of chromium oxide. The crystals grew, and their number increased as annealing time was extended. The amount of chromium increased in the surface layer at the expense of iron and nickel, and the longer the annealing time was set, the more chromium was observed in the surface layer. Iron compounds (BCC iron, mixed Fe–Cr oxide) were found in the surface layer, in addition to chromium oxide. BCC iron appeared only after annealing for at least 4 h, which is the initial time of austenitic–ferritic transformation. Mixed Fe–Cr oxide was observed in all annealed samples. All phase changes were observed in the surface layer at approximately 0.6 µm depth.

Funder

Palacký University

Czech Ministry of Education, Youth and Sports

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3