Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020

Author:

Li Tong,Cui Lizhen,Xu Zhihong,Hu RonghaiORCID,Joshi Pawan K.,Song Xiufang,Tang Li,Xia Anquan,Wang Yanfen,Guo DaORCID,Zhu Jiapei,Hao Yanbin,Song Lan,Cui XiaoyongORCID

Abstract

Grassland remote sensing (GRS) is an important research topic that applies remote sensing technology to grassland ecosystems, reflects the number of grassland resources and grassland health promptly, and provides inversion information used in sustainable development management. A scientometrics analysis based on Science Citation Index-Expanded (SCI-E) was performed to understand the research trends and areas of focus in GRS research studies. A total of 2692 papers related to GRS research studies and 82,208 references published from 1980 to 2020 were selected as the research objects. A comprehensive overview of the field based on the annual documents, research areas, institutions, influential journals, core authors, and temporal trends in keywords were presented in this study. The results showed that the annual number of documents increased exponentially, and more than 100 papers were published each year since 2010. Remote sensing, environmental sciences, and ecology were the most popular Web of Science research areas. The journal Remote Sensing was one of the most popular for researchers to publish documents and shows high development and publishing potential in GRS research studies. The institution with the greatest research documents and most citations was the Chinese Academy of Sciences. Guo X.L., Hill M.J., and Zhang L. were the most productive authors across the 40-year study period in terms of the number of articles published. Seven clusters of research areas were identified that generated contributions to this topic by keyword co-occurrence analysis. We also detected 17 main future directions of GRS research studies by document co-citation analysis. Emerging or underutilized methodologies and technologies, such as unmanned aerial systems (UASs), cloud computing, and deep learning, will continue to further enhance GRS research in the process of achieving sustainable development goals. These results can help related researchers better understand the past and future of GRS research studies.

Funder

the International Partnership Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3