Trajectory Tracking Algorithm Study of Coal Mine Water Detector Drilling Bar Installation

Author:

Qin Jianguo1,Li Shufang1ORCID,Gong Haixia2ORCID,Cui Zhaoxia1,Zou Yunhe1,Guo Sijia3

Affiliation:

1. School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

2. School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

3. School of Mechanical Engineering, Jiamusi University, Jiamusi 154007, China

Abstract

Mechanical water detection is recognized as the most reliable and safe production technology for coal mines, mainly for the detection of water hazards in pre-mining operations. Intelligent water detectors are currently the main research direction in mechanical water detection, and the automatic installation of drilling bars is the key to achieving intelligent water detection. Improving the connection accuracy in the process of installing drilling bars is an important research topic for the improvement of control links. To improve the connection accuracy of the drilling bars at the time of supplying material, we used the modified Denavit–Hartenberg method to analyze the motion gestures of the supplied material device and the Lagrange equation to establish a dynamic analysis model. We aimed at better control precision by improving the sliding mode control algorithm and at increasing the convergence rate of tracking errors with a sliding controller based on an exponential approximation law and using saturated functions instead of the symbol functions in the reaching law to weaken the vibration in the control process. We then used particle swarm optimization (PSO) to find the optimum combination parameters of the sliding mode controllers and test the performance of the sliding mode controllers before and after PSO with MATLAB/Simulink. The results showed that the optimized controller has a strong resistance to parameter fluctuations, and the system responds quickly, achieves a good performance, and improves the convergence rate of tracking errors.

Funder

Jianguo Qin and Haixia Gong

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3