Research on a Pedestrian Crossing Intention Recognition Model Based on Natural Observation Data

Author:

Zhang HongjiaORCID,Liu Yanjuan,Wang Chang,Fu Rui,Sun Qinyu,Li ZhenORCID

Abstract

Accurate identification of pedestrian crossing intention is of great significance to the safe and efficient driving of future fully automated vehicles in the city. This paper focuses on pedestrian intention recognition on the basis of pedestrian detection and tracking. A large number of natural crossing sequence data of pedestrians and vehicles are first collected by a laser scanner and HD camera, then 1980 effective crossing samples of pedestrians are selected. Influencing parameter sets of pedestrian crossing intention are then obtained through statistical analysis. Finally, long short-term memory network with attention mechanism (AT-LSTM) model is proposed. Compared with the support vector machine (SVM) model, results show that when the pedestrian crossing intention is recognized 0 s prior to crossing, the recognition accuracy of the AT-LSTM model for pedestrian crossing intention is 96.15%, which is 6.07% higher than that of SVM model; when the pedestrian crossing intention is recognized 0.6 s prior, the recognition accuracy of AT-LSTM model is 90.68%, which is 4.85% higher than that of the SVM model. The determination of pedestrian crossing intention parameter set and the more accurate recognition of pedestrian intention provided in this work provide a foundation for future fully automated driving vehicles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Driverless Technology Roadmap,2016

2. The Effect of Autonomous Vehicles on Traffic;Friedrich,2016

3. Understanding Pedestrian Behavior in Complex Traffic Scenes

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting and Analyzing Pedestrian Crossing Behavior at Unsignalized Crossings;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

2. Pedestrian safety crossing ensuring at a light regulated junction;AIP Conference Proceedings;2024

3. Research on Cross-modal Person re-ID Technology Based on Fusion of Multimodal Data;2023 International Conference on Computer Simulation and Modeling, Information Security (CSMIS);2023-11-15

4. Diminution of Pedestrian Accident on Crowded Urban Streets Using Content-Based Video Retrieval;2023 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD);2023-11-13

5. Pedestrian Behavior Prediction Using Deep Learning Methods for Urban Scenarios: A Review;IEEE Transactions on Intelligent Transportation Systems;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3