Author:
Zhang Minghui,Li Xueli,Xing Fu,Li Zhuo,Liu Xiaowei,Li Yanan
Abstract
Both atmospheric nitrogen (N) deposition and soil microbial legacy (SML) can affect plant performance, the activity of soil N-cycling functional microbes and the relative abundance of N-cycling functional genes (NCFGs). In the grassland vegetation successional process, how the interaction of SML and N deposition affects the performance of dominant grass and NCFGs remains unclear. Therefore, we planted Leymus chinensis, a dominant grass in the Songnen grassland, in the soil taken from the early, medium, late, and stable successional stages. We subjected the plants to soil sterilization and N addition treatments and measured the plant traits and NCFG abundances (i.e., nifH, AOB amoA, nirS, and nirK). Our results showed the biomass and ramet number of L. chinensis in sterilized soil were significantly higher than those in non-sterilized soil, indicating that SML negatively affects the growth of L. chinensis. However, N addition increased the plant biomass and the AOB amoA gene abundance only in sterilized soils, implying that SML overrode the N addition effects because SML buffered the effects of increasing soil N availability on NCFGs. Therefore, we emphasize the potential role of SML in assessing the effects of N deposition on dominant plant performance and NCFGs in the grassland vegetation succession.
Funder
National Natural Science Foundation of China
Program for Introducing Talents to Universities
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献