Abstract
Enhanced UV-B radiation resulting from stratospheric ozone depletion has been documented both globally and on the Qinghai-Tibet Plateau in China. The response of Kobresia humilis, an important alpine meadow plant species, to enhanced UV-B radiation was experimentally investigated at the Haibei Alpine Meadow Ecosystem Research Station (37°29′–37°45′ N, 101°12′–101°23′ E; alt. 3200 m). K. humilis was exposed to UV-B radiation including ambient UV-B and enhanced UV-B (simulating a 14% reduction in the ozone layer) in a randomized design with three replications of each treatment. Enhanced UV-B radiation resulted in a significant increase of both leaf area and fresh weight chlorophyll and carotenoid but had no effect on UV-B absorbing pigments. Similarly, enhanced UV-B radiation did not significantly change the photosynthetic O2 elevation rate while leaf thickness, width, and length significantly increased (p < 0.01). The enhanced UV-B radiation was associated with 2–3 days earlier flowering and a larger number of flowers per spikelet. The enhanced UV-B generally resulted in larger leaves and more flowers but earlier phenology. In summary, these findings suggest that alpine species of K. humilis have adapted to the strong solar UV-B radiation intensity presented on the Qinghai-Tibet Plateau, but the interspecies differences and their influence on trophic level should be more concerning.
Funder
Natural Science Foundation of Qinghai Province
Construction Project for Innovation Platform of Qinghai Province
Basic Research Innovation Project of Gansu Province
Innovation team project of basic research program of Qinghai province
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献