Plant Macrofossils Reveal Aquatic Macrophyte Successions of a Typical Shallow Lake (Huanggai Lake, China) in the Past Century

Author:

Cheng Qijuan,Li Liangfang,Dong XuhuiORCID,Li Yan,Kattel GiriORCID

Abstract

Aquatic macrophytes are one of the important biotic components of shallow lake ecosystems. Understanding the long-term evolution of the macrophyte community is crucial for lake management. Huanggai Lake, a typical shallow lake in the middle reach of the Yangtze River, was selected as the research site for this study. Based on 210Pb/137Cs dating, aquatic plant macrofossils were used to reconstruct the succession of aquatic macrophytes in the past century. Our results show that the lake maintained a consistent natural state before 1940, with a relatively low abundance of aquatic plants dominated by species such as Najas minor. From 1940 to 1974, human activities gradually intensified in the lake leading to the emergence of eutrophic species such as Potamogeton maackianus, along with the increasing abundance of other emergent and floating aquatic macrophytes. Since 1974, more pollution-resistant, emergent species such as Potamogeton maackianus and Potamogeton crispus have become dominant. The abundance of aquatic macrophytes reached its maximum in the early 1990s. Combined with macrofossil succession and other multiple sedimentary proxy analyses, driving mechanisms for aquatic macrophytes are discussed. Both the nearby Liangzi Lake and Huanggai Lake share many common features of aquatic plant evolution. This study is the first of its kind to use plant macrofossils (with identifiable images) as a proxy for aquatic macrophyte succession in a shallow Yangtze lake. In absence of long-term monitoring records, this study highlights the increased application of plant macrofossils for reconstructing the vegetation dynamics and restoration of degraded lakes exposed to severe anthropogenic impacts over the past century.

Funder

National Natural Science Foundation of China

Nanjing University of Information Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3