Abstract
Silicon (Si) is a beneficial element for the growth of various crops, but its effect on plant metabolism is still not completely elucidated. Even if Si is not classified as an essential element for plants, the literature has reported its beneficial effects in a variety of species. In this work, the influence of Si foliar application on berry composition was evaluated on four grapevine cultivars. The berries of Teroldego and Oseleta (red grapes) and Garganega and Chardonnay (white grapes) were analyzed after foliar application of silicon by comparing the treated and control groups. A targeted metabolomic approach was used that focused on secondary metabolites, amino acids, sugars, and tartaric acid. Measurements were performed using liquid chromatography coupled with a diode array detector and mass spectrometry (LC-DAD-MSn), a LC-evaporative light scattering detector (ELDS), and LC-MS/MS methods specific for the analysis of each class of constituents. After the data collection, multivariate models, PCA, PLS-DA, OPLS-DA, were elaborated to evaluate the effect of Si application in the treated vs. control samples. Results were different for each grape cultivar. A significant increase in anthocyanins was observed in the Oseleta cultivar, with 0.48 mg g−1 FW in the untreated samples vs. 1.25 mg g−1 FW in the Si-treated samples. In Garganega, Si treatment was correlated with increased proline levels. In Chardonnay, the Si application was related to decreased tartaric acid. The results of this work show for the first time that Si induces cultivar specific changes in the berry composition in plants cultivated without an evident abiotic or biotic stress.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献