The Response of Spore Germination of Sphagnum Mosses to Single and Combined Fire-Related Cues

Author:

Yusup Shuayib,Sundberg Sebastian,Fan Beibei,Sulayman Mamtimin,Bu Zhao-JunORCID

Abstract

Plants in flammable ecosystems have different response strategies to fire, such as increasing germination after exposure to smoke and break of dormancy through heat shock. Peatlands are ecosystems that are more likely to be disturbed by fire with increasing temperatures, but it is not clear how fire affects spore germination of Sphagnum, the dominant plants in peatlands. Here, we hypothesize that Sphagnum spores respond positively to single and combined treatments of moderate heat and smoke (by increased germinability), while spore germinability decreases in response to high temperature. We exposed the Sphagnum spores of four selected species (S. angustifolium, S. fuscum, S. magellanicum and S. squarrosum) collected from peatlands in the Changbai Mountains to heat (40, 60 and 100 °C), on its own and combined with smoke-water treatments. Our results showed that a heat of 100 °C inhibited the spore germination or even killed spores of all species, while spore germination of three (Sphagnumangustifolium, S. fuscum and S. squarrosum) of the four species was promoted by 40 and 60 °C heat compared to the control (20 °C). Hollow species (S. angustifolium and S. squarrosum) showed a stronger positive responsive to heat than hummock species (S. fuscum and S. magellanicum). Sphagnumfuscum spores responded positively to the combined heat and smoke treatment while the other species did not. For the first time, we demonstrate the positive effects of heat on its own and in combination with smoke on spore germination in wetland mosses, which may be important for the establishment and persistence of peatmoss populations after fire.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3