Dynamic Self-Adaptive Modeling for Real-Time Flood Control Operation of Multi-Reservoir Systems

Author:

Li Jieyu,Zhong Ping-an,Wang Yuanjian,Liu Yanhui,Zheng Jiayun,Yang Minzhi,Liu Weifeng

Abstract

In the real-time flood control operation of multi-reservoir systems, it is of great significance to establish a dynamic operating system with high efficiency based on the spatiotemporal variation of flood control situations. This paper proposes a self-adaptive modeling framework for real-time flood control operation of multi-reservoirs based on the cyber–physical system (CPS) theory. Firstly, the random flood samples considering the randomness of both space and magnitude are generated, and then the multi-reservoir real-time flood control hybrid operation (MRFCHO) model is established based on the dynamic identification of effective reservoirs. Then, the CPS theory is introduced to put forward the multi-reservoir real-time flood control hybrid operation cyber–physical system (MRFCHOCPS), which integrates real-time monitoring, control center, database, computation module, and communication network. Finally, the proposed framework is demonstrated in terms of accuracy, efficiency, and adaptability in real-time flood control operations. A case study of the multi-reservoir system upstream of the Lutaizi point in the Huaihe River basin in China reveals that (1) the equivalent qualified rate of the MRFCHO model is 84.9% for random flood samples; (2) the efficiency of solving the MRFCHO model is much higher than the efficiency of solving the MRFCJO model under the premise of ensuring the flood control effect, so it provides a reliable method for the real-time operation of basin-wide floods; (3) the MRFCHOCPS has good adaptability in real-time dynamic modeling and operation of large-scale multi-reservoir systems.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Science and Technology Development Foundation of Yellow River Institute of Hydraulic Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference31 articles.

1. Near Real-Time Optimization of Multi-Reservoir during Flood Season in the Fengman Basin of China;Wang;Water Resour. Manag.,2013

2. Application of a New Approach in Optimizing the Operation of the Multi-Objective Reservoir;Donyaii;J. Hydraul. Struct.,2020

3. Multi-objective game theory optimization for balancing economic, social and ecological benefits in the Three Gorges Reservoir operation;Yu;Environ. Res. Lett.,2021

4. Short-term hydropower optimization driven by innovative time-adapting econometric model;Avesani;Appl. Energy,2022

5. Optimizing profits from hydroelectricity production;Gendreau;Comput. Oper. Res.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3