Fast Approximations of Activation Functions in Deep Neural Networks when using Posit Arithmetic

Author:

Cococcioni MarcoORCID,Rossi FedericoORCID,Ruffaldi EmanueleORCID,Saponara Sergio

Abstract

With increasing real-time constraints being put on the use of Deep Neural Networks (DNNs) by real-time scenarios, there is the need to review information representation. A very challenging path is to employ an encoding that allows a fast processing and hardware-friendly representation of information. Among the proposed alternatives to the IEEE 754 standard regarding floating point representation of real numbers, the recently introduced Posit format has been theoretically proven to be really promising in satisfying the mentioned requirements. However, with the absence of proper hardware support for this novel type, this evaluation can be conducted only through a software emulation. While waiting for the widespread availability of the Posit Processing Units (the equivalent of the Floating Point Unit (FPU)), we can already exploit the Posit representation and the currently available Arithmetic-Logic Unit (ALU) to speed up DNNs by manipulating the low-level bit string representations of Posits. As a first step, in this paper, we present new arithmetic properties of the Posit number system with a focus on the configuration with 0 exponent bits. In particular, we propose a new class of Posit operators called L1 operators, which consists of fast and approximated versions of existing arithmetic operations or functions (e.g., hyperbolic tangent (TANH) and extended linear unit (ELU)) only using integer arithmetic. These operators introduce very interesting properties and results: (i) faster evaluation than the exact counterpart with a negligible accuracy degradation; (ii) an efficient ALU emulation of a number of Posits operations; and (iii) the possibility to vectorize operations in Posits, using existing ALU vectorized operations (such as the scalable vector extension of ARM CPUs or advanced vector extensions on Intel CPUs). As a second step, we test the proposed activation function on Posit-based DNNs, showing how 16-bit down to 10-bit Posits represent an exact replacement for 32-bit floats while 8-bit Posits could be an interesting alternative to 32-bit floats since their performances are a bit lower but their high speed and low storage properties are very appealing (leading to a lower bandwidth demand and more cache-friendly code). Finally, we point out how small Posits (i.e., up to 14 bits long) are very interesting while PPUs become widespread, since Posit operations can be tabulated in a very efficient way (see details in the text).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference19 articles.

1. Safety-Related Challenges and Opportunities for GPUs in the Automotive Domain

2. Towards limiting the impact of timing anomalies in complex real-time processors

3. 10 Useful Tips for Using the Floating Point Unit on the Cortex-M4 https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/10-useful-tips-to-using-the-floating-point-unit-on-the-arm-cortex--m4-processor

4. Flexpoint: Predictive Numerics for Deep Learning

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a novel low-latency parameterizable posit adder/subtractor using leading one predictor in FPGA;Digital Signal Processing;2024-12

2. Pseudo-Normalization via Integer Fast Inverse Square Root and Its Application to Fast Computation without Division;Electronics;2024-07-26

3. 8-bit Transformer Inference and Fine-tuning for Edge Accelerators;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

4. Bitwise Optimization for Rapid Tanh Function Evaluation;2024 15th Annual Undergraduate Research Conference on Applied Computing (URC);2024-04-24

5. Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine;Computers, Materials & Continua;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3