Cardiovascular Fitness and Stride Acceleration in Race-Pace Workouts for the Prediction of Performance in Thoroughbreds

Author:

Schrurs Charlotte1ORCID,Dubois Guillaume2ORCID,Van Erck-Westergren Emmanuelle3,Gardner David S.1ORCID

Affiliation:

1. School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK

2. Arioneo, Rue Claude Farrère, 6, 75016 Paris, France

3. Equine Sports Medicine Practice, 83 Avenue Beau Séjour, 1410 Waterloo, Belgium

Abstract

In-training racehorse physiological data can be leveraged to further explore race-day performance prediction. To date, no large retrospective, observational study has analysed whether in-training speed and heart rate recovery can predict racehorse success. Speed (categorised as ‘slow’ to ‘fast’ according to the time taken to cover the last 600 m from a virtual finish line) and heart rate recovery (from gallop to 1 min after exercise) of flat racehorses (n = 485) of varying age, sex and type according to distance (e.g., sprinter, miler and stayer) were obtained using a fitness tracker from a single racing yard in Australia. Race-pace training sessions on turf comprised ‘fast gallop’ (n = 3418 sessions) or ‘jumpout’ (n = 1419). A posteriori racing information (n = 3810 races) for all 485 racehorses was extracted and combined with training data. Race performance was categorised as win/not-win or podium or not, each analysed by logistic regression. Colts (p < 0.001), stayers (p < 0.001) and being relatively fast over the last 600 m of a benchmark test in training (p < 0.008) were all predictive of race performance. Heart rate recovery after exercise (p = 0.21) and speed recorded at 600 m of a 1 km benchmark test in training (p = 0.94) were not predictive. In-training physiological data analytics used along with subjective experience may help trainers identify promising horses and improve decision-making.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3