A Versatile MANET Experimentation Platform and Its Evaluation through Experiments on the Performance of Routing Protocols under Diverse Conditions

Author:

Manolopoulos Ioannis,Loukatos DimitriosORCID,Kontovasilis Kimon

Abstract

Mobile Ad hoc Networks (MANETs) are characterized by highly dynamic phenomena and volatility. These features have a significant impact on network performance and should be present in the scenarios of experiments for the assessment of MANET-related technologies. However, the currently available experimentation approaches suffer from limitations, either employing overly abstract simulation-based models that cannot capture real-world imperfections or drawing upon “monolithic” testbeds suited only to a narrow set of predetermined technologies, operational scenarios, or environmental conditions. Toward addressing these limitations, this work proposes a versatile platform that can accommodate many of the complexities present in real-world scenarios while still remaining highly flexible and customizable to enable a wide variety of MANET-related experiments. The platform is characterized by a modular architecture with clearly defined modules for the signaling between peer mobile nodes, the tracking of each node’s location and motion, the routing protocol functionality, and the management of communication messages at each node. The relevant software runs on inexpensive Raspberry Pi-based commodity hardware, which can be readily attached to robotic devices for moving the network nodes in accordance with controlled mobility patterns. Moreover, through an appropriate tuning of certain modules, a number of important operational conditions can be precisely controlled through software, e.g., restricting the communications range (thus reducing the network density) or for emulating the mobility patterns of nodes. The effectiveness and versatility of the proposed platform are demonstrated through the realization of a series of experiments on the performance comparison of selected routing protocols under diverse network density conditions.

Funder

European Union’s Horizon 2020 Framework Programme for Research and Innovation, project RAWFIE—“Road-, Air- and Water-based Future Internet Experimentation”

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3