An Energy-Based Unified Approach to Predict the Low-Cycle Fatigue Life of Type 316L Stainless Steel under Various Temperatures and Strain-Rates

Author:

Tak Nae,Kim Jung-Seok,Lim Jae-Yong

Abstract

An energy-based low-cycle fatigue model was proposed for applications at a range of temperatures. An existing model was extended to the integrated approach, incorporating the simultaneous effects of strain rate and temperature. A favored material at high temperature, type 316L stainless steel, was selected in this study and its material characteristics were investigated. Tensile tests and low-cycle fatigue tests were performed using several strain rates at a temperature ranging from room temperature to 650 °C. Material properties were obtained in terms of temperature using the displacement-controlled tensile tests and further material response were investigated using strain-controlled tensile tests. Consequently, no pronounced reduction in strengths occurred at temperatures between 300 and 550 °C, and a negative strain rate response was observed in the temperature range. Based on the low-cycle fatigue tests by varying strain rates and temperature, it was found that a normalized plastic strain energy density and a strain-rate modified cycle were successfully correlated. The accuracy of the model was discussed by comparing between predicted and experimental lives.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3