OpenGDC: Unifying, Modeling, Integrating Cancer Genomic Data and Clinical Metadata

Author:

Cappelli EleonoraORCID,Cumbo FabioORCID,Bernasconi AnnaORCID,Canakoglu ArifORCID,Ceri StefanoORCID,Masseroli MarcoORCID,Weitschek EmanuelORCID

Abstract

Next Generation Sequencing technologies have produced a substantial increase of publicly available genomic data and related clinical/biospecimen information. New models and methods to easily access, integrate and search them effectively are needed. An effort was made by the Genomic Data Commons (GDC), which defined strict procedures for harmonizing genomic and clinical data of cancer, and created the GDC data portal with its application programming interface (API). In this work, we enhance GDC harmonization by applying a state of the art data model (called Genomic Data Model) made of two components: the genomic data, in Browser Extensible Data (BED) format, and the related metadata, in a tab-delimited key-value format. Furthermore, we extend the GDC genomic data with information extracted from other public genomic databases (e.g., GENCODE, HGNC and miRBase). For metadata, we implemented automatic procedures to extract and normalize them, recognizing and eliminating redundant ones, from both Clinical/Biospecimen Supplements and GDC Data Model, that are present on the two sources of GDC (i.e., data portal and API). We developed and released the OpenGDC software, which is able to extract, integrate, extend, and standardize genomic and clinical data of The Cancer Genome Atlas (TCGA) from the GDC. Additionally, we created a publicly accessible repository, containing such homogenized and enhanced TCGA data (resulting in about 1.3 TB). Our approach, implemented in the OpenGDC software, provides a step forward to the effective and efficient management of big genomic and clinical data of cancer. The strong usability of our data model and utility of our work is demonstrated through the application of the GenoMetric Query Language (GMQL) on the transformed TCGA data from the GDC, achieving promising results, facilitating information retrieval and knowledge discovery analyses.

Funder

European Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3