The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement

Author:

Capera Jesusa,Serrano-Novillo Clara,Navarro-Pérez María,Cassinelli Silvia,Felipe AntonioORCID

Abstract

Ion channels are transmembrane proteins that conduct specific ions across biological membranes. Ion channels are present at the onset of many cellular processes, and their malfunction triggers severe pathologies. Potassium channels (KChs) share a highly conserved signature that is necessary to conduct K+ through the pore region. To be functional, KChs require an exquisite regulation of their subcellular location and abundance. A wide repertoire of signatures facilitates the proper targeting of the channel, fine-tuning the balance that determines traffic and location. These signature motifs can be part of the secondary or tertiary structure of the protein and are spread throughout the entire sequence. Furthermore, the association of the pore-forming subunits with different ancillary proteins forms functional complexes. These partners can modulate traffic and activity by adding their own signatures as well as by exposing or masking the existing ones. Post-translational modifications (PTMs) add a further dimension to traffic regulation. Therefore, the fate of a KCh is not fully dependent on a gene sequence but on the balance of many other factors regulating traffic. In this review, we assemble recent evidence contributing to our understanding of the spatial expression of KChs in mammalian cells. We compile specific signatures, PTMs, and associations that govern the destination of a functional channel.

Funder

Ministerio de Economía y Competitividad

European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3