A Compact Dual-Band Millimeter Wave Antenna for Smartwatch and IoT Applications with Link Budget Estimation

Author:

Bhadrvathi Ghouse Parveez Shariff1ORCID,Mane Pallavi R.1,Thankappan Sumangala Sangeetha2,Kumar Puttur Vasanth1,Pathan Sameena2ORCID,Jhunjhunwala Vikash Kumar3,Ali Tanweer1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

2. Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

3. Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

Abstract

Advancement in smartwatch sensors and connectivity features demands low latency communication with a wide bandwidth. ISM bands below 6 GHz are reaching a threshold. The millimeter-wave (mmWave) spectrum is the solution for future smartwatch applications. Therefore, a compact dual-band antenna operating at 25.5 and 38 GHz is presented here. The characteristics mode theory (CMT) aids the antenna design process by exciting Mode 1 and 2 as well as Mode 1–3 at their respective bands. In addition, the antenna structure generates two traverse modes, TM10 and TM02, at the lower and higher frequency bands. The antenna measured a bandwidth (BW) of 1.5 (25–26.5 GHz) and 2.5 GHz (37–39.5 GHz) with a maximum gain of 7.4 and 7.3 dBi, respectively. The antenna performance within the watch case (stainless steel) showed a stable |S11| with a gain improvement of 9.9 and 10.9 dBi and a specific absorption rate (SAR) of 0.063 and 0.0206 W/kg, respectively, at the lower and higher bands. The link budget analysis for various rotation angles of the watch indicated that, for a link margin of 20 dB, the antenna can transmit/receive 1 Gbps of data. However, significant fading was noticed at certain angles due to the shadowing effect caused by the watch case itself. Nonetheless, the antenna has a workable bandwidth, a high gain, and a low SAR, making it suitable for smartwatch and IoT applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3