The Use of Sargassum spp. Ashes Like a Raw Material for Mortar Production: Composite Performance and Environmental Outlook

Author:

Lyra Gabriela Pitolli1,Colombo Ana Letícia2,Duran Afonso José Felício Peres2ORCID,Parente Igor Machado da Silva2ORCID,Bueno Cristiane3ORCID,Rossignolo João Adriano1ORCID

Affiliation:

1. Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, Universidade de São Paulo (USP), Pirassununga 13635-900, Brazil

2. Post-Graduation Program in Material Science and Engineering, Faculty of Animal Science and Food Engineering, Universidade de São Paulo (USP), Pirassununga 13635-900, Brazil

3. Department of Civil Engineering, Universidade Federal de São Carlos (UFSCAR), São Carlos 13565-905, Brazil

Abstract

The accumulation of brown algae from the genus Sargassum has been increasing over the years in coastal regions of the Caribbean, Africa, Brazil, and Mexico. This causes harmful effects to the ecosystem, human health, the economy, and the climate due to gas emissions from its decomposition process. There is the possibility of this biomass being reused in civil construction, and some studies have been carried out on its application to common Portland cement mortar. As such, the objective of this study is to evaluate the potential of sargassum ash as a mineral addition to partially replace fine aggregates in Portland cement mortar. Characterization of the raw materials was carried out through X-ray fluorescence spectroscopy, loss on ignition, particle size distribution, Brunauer–Emmett–Teller (BET) analysis, real density, X-ray diffraction, scanning electron microscopy, and dispersion spectroscopy of electrons. The mortars were prepared by partially replacing the fine aggregate (sand) with sargassum ash at 0%, 5%, 10%, and 20%. Mortar performance was evaluated through water absorption, apparent porosity, apparent specific mass, and compressive strength 7, 28, and 63 days after curing. Lastly, a life cycle assessment was conducted in accordance with ISO standards 14040:2006 and 14044:2006. The results showed that replacing sand with sargassum ash increases water absorption and apparent porosity, and decreases the apparent specific mass and compressive strength as replacement increases. Nevertheless, the compressive strength results after 63 days for 5 and 10% replacement did not differ statistically from reference values. The life cycle assessment indicated that mortars with partial replacement of sand by sargassum ash show positive environmental impacts when compared to reference values for most categories, regardless of the scenario analyzed, especially for mortar with 10% replacement. As such, the use of sargassum ash at 10% does not alter the mortar’s compressive strength values after 63 days, but does reduce its environmental impact. The application of this biomass in civil construction materials provides a destination for this algae, and that can be a solution to mitigate the social, environmental, and economic problems it has been causing.

Funder

FAPESP—Fundação de Amparo à Pesquisa do Estado do São Paulo

Conselho Nacional de Desenvolvimento Científico e Técnológico (CNPq), Process

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3