Unraveling the Metabolic Changes in Acute Pancreatitis: A Metabolomics-Based Approach for Etiological Differentiation and Acute Biomarker Discovery

Author:

Dancu Greta1,Tarta Cristi2ORCID,Socaciu Carmen3ORCID,Bende Felix1ORCID,Danila Mirela1,Sirli Roxana1,Sporea Ioan1,Miutescu Bogdan1ORCID,Popescu Alina1

Affiliation:

1. Center for Advanced Research in Gastroenterology and Hepatology, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania

2. Department X, 2nd Surgical Clinic, Researching Future Chirurgie 2, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania

3. Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania

Abstract

Acute pancreatitis (AP) remains a challenging medical condition, where a deeper metabolic insight could pave the way for innovative treatments. This research harnessed serum metabolomics to discern potential diagnostic markers for AP and distinguish between its biliary (BAP) and alcohol-induced (AAP) forms. Leveraging high-performance liquid chromatography coupled with mass spectrometry, the metabolic signatures of 34 AP patients were contrasted against 26 healthy participants, and then between different etiologies of AP. The results identified metabolites primarily from glycerophospholipids, glycerolipids, fatty acyls, sterol lipids, and pteridines and derivative classes, with the Human Metabolome Database aiding in classification. Notably, these metabolites differentiated AP from healthy states with high AUROC values above 0.8. Another set of metabolites revealed differences between BAP and AAP, but these results were not as marked as the former. This lipidomic analysis provides an introduction to the metabolic landscape of acute pancreatitis, revealing changes in multiple lipid classes and metabolites and identifying these metabolites. Future research could add and discover new diagnostic biomarkers and therapeutic strategies enhancing the management of acute pancreatitis.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3