Abstract
In this work, low-temperature Schottky source/drain (S/D) MOSFETs are investigated as the top-tier devices for 3D sequential integration. Complementary Schottky S/D FinFETs are successfully fabricated with a maximum processing temperature of 500 °C. Through source/drain extension (SDE) engineering, competitive driving capability and switching properties are achieved in comparison to the conventional devices fabricated with a standard high-temperature (≥1000 °C) process flow. Schottky S/D PMOS exhibits an ON-state current (ION) of 76.07 μA/μm and ON-state to OFF-state current ratio (ION/IOFF) of 7 × 105, and those for NMOS are 48.57 μA/μm and 1 × 106. The CMOS inverter shows a voltage gain of 18V/V, a noise margin for high (NMH) of 0.17 V and for low (NML) of 0.43 V, with power consumption less than 0.9 μW at VDD of 0.8 V. Full functionality of CMOS ring oscillators (RO) are further demonstrated.
Funder
Beijing National Natural Science Foundation of China
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献