Evolutionary Characterization of tubulin Gene Family in the Desert Biomass Willow (Salix psammophila) and Expression of the β-tubulin Gene SpsTUB10 during Different Stresses

Author:

He Yujiao1,Fan Lijiao1,Wang Ruiping2,Han Shengli3,Sun Guirong3,Yu Fengqiang2,Yang Qi1,Yang Haifeng1ORCID,Zhang Guosheng1

Affiliation:

1. College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Ordos Forestry and Grassland Bureau, Ordos 017010, China

3. Ordos Afforestation General Farm, Ordos 014300, China

Abstract

Microtubules, polymerized from α-tubulin (TUA) and β-tubulin (TUB) monomers, play a pivotal role in shaping plant morphogenesis according to developmental and environmental cues. Salix psammophila C. Wang & C. Y. Yang is an important shrub plant in sand-fixing afforestation in arid regions, with three significantly distinct plant types shaped under various environments, namely, upright, intermediate, and scattered types. However, how tubulin genes respond to the developmental and environmental signs in S. psammophila has been far less studied. Here, based on RNA-seq, Sanger sequencing, and real-time PCR (RT-PCR) data, we analyzed the phylogeny of tubulins and their expression profiles in S. psammophila among the three plant types. Furthermore, we analyzed the genetic structure and expression pattern of SpsTUB10 in S. psammophila under various abiotic stress treatments. In total, we identified 26 SpsTubulin genes in S. psammophila. The homologous alignment and phylogenetic analysis revealed that these SpsTubulin genes can be classified into two groups, corresponding to the TUA and TUB genes. The expression profiles of these SpsTubulin genes in various organs showed that most SpsTubulin genes were mainly expressed in the root. SpsTUB10 is a member of the TUB IIa group, consisting of two intros and three exons. The SpsTUB10 protein contains a typical GTPase domain and a C-terminal domain, with α-helix and random coil dominant in the secondary and tertiary structures. The RT-PCR results of SpsTUB10 showed an extremely significant difference in expression levels among the root and stem-developing organs between the upright and scattered types, and the transcript level of SpsTUB10 had a significantly negative correlation with the crown-height ratio. Under different treatments, we found that cold, osmotic stress, and short daylight could significantly increase SpsTUB10 expression levels compared to those in the controls, thereby supporting the positive role of SpsTUB10 in stress-induced responses. These results will provide evidence for the SpsTubulin genes’ response to the developmental and environmental cues in S. psammophila.

Funder

Inner Mongolia Autonomous Region Applied Technology Research and Development Fund Project

Inner Mongolia Autonomous Region Science and Technology Plan Project

Inner Mongolia Autonomous Region Natural Science Gene Project

Task Book for Key R&D Plan Projects in Ordos City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3