Characteristic Analysis of Unsafe Behavior by Coal Miners: Multi-Dimensional Description of the Pan-Scene Data

Author:

Tong RuipengORCID,Zhang Yanwei,Cui Pengcheng,Zhai Cunli,Shi Meng,Xu Surui

Abstract

As a high-risk occupation, coal mining has many accidents, primarily due to the unsafe behavior of coal miners. Based on the research of analysis of unsafe behavior and pan-scenario data of miners, a theoretical framework for the analysis of unsafe behavior characteristics was proposed in this paper. The collected data were divided into realistic scenes and abstract scenes according to different manifestations; the pan-scene data were described from the eight dimensions of time, behavioral trace, location, behavioral property, behavioral individual, degree, unsafe action, and specialty using a quantitative method for the structure conversion; and the rules were discovered through cluster analysis and association analysis. A total of 225 coal mine gas explosion accidents were used for analysis, and the pan-scene data description and structure conversion of unsafe behavior that caused these accidents were realized. In a certain cluster, the distribution rules of dimensions and the interaction between different dimensions of unsafe behavior were explored after analysis. The results show that the proposed eight dimensions can fully explain the basic characteristics and attributes of the unsafe behavior of coal miners. The structure conversion can reduce the workload of managers and effectively improve the safety data processing capabilities, and the result of data analysis can provide data support and a management basis for safety management. A new method and thought for the data analysis of miners’ unsafe behavior is provided.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3